

/* CHANGING EFFECTS VIA PROPERTY BROWSER AND MESSAGES */

/* You will need to build a sample asset with these tags, meshes, tracks and triggers
included. A small engine shed with opening doors. A flashing light and a name effect
above the doors perhaps and an optional submesh, perhaps a chimney. You will also
need a texture-group if you plan to implement skin swapping.

Comment out any lines which apply to effects which you haven’t implemented yet. You
should be aware that running SetMeshVisible() or SetFXNameText() when the referenced
effects are not present or are incorrectly configured will crash the game.

The asset is defined as kind buildable but the same principles will apply to almost any
object.
*/

CONFIG.TXT

Config.txt file references which will be needed by the
sample scripts. This file is for a buildable asset but the
entries would be the same for any scriptable kind.

 kind buildable asset kind
 script myClass script file reference
 class myClass script class reference
 kuid-table {
 skins <kuid:12345:67890> kuid of texture-group to be used for skin swapping
 }
 mesh-table {
 default {
 mesh default.im

 anim anim.kin

shed door animation to be controlled via messages
received from a vehicle entering the shed and, for test
purposes, by a link in the Property Browser

 effects {
 corona0 { corona to be controlled from the property browser
 kind corona
 att a.corona01
 texture-kuid <kuid:123:456> corona will be illuminated by default using this texture
 object-size 0.5
 }
 name0 { name text to be controlled from the property browser
 kind name
 fontsize 0.5
 fontcolour 255,255,0

 att a.name1a

 name
name effect will initially be an empty string to be
controlled from the property browser

 }
 skin0 { door skin to be controlled from the property browser
 kind texture-replacement
 texture colour.texture initial texture will be as defined in the gmax model
 }
 }
 submesh0 { weather vane

 mesh submesh.im
hideable submesh to be controlled from the property
browser

 auto-create 0

submesh will be invisible by default until shown by the
script

 }
 }

 attached-track {
 track1 {
 track <kuid:123:4567>
 vertices {
 0 a.track1a
 1 a.track1b
 }
 }
 }

 attached_trigger {
 trigger1 {
 att a.trigger1
 radius 50
 }
 }

/* SCRIPT FILE – SAVE IN THE ASSET FOLDER AS MYCLASS.GS

In simple assets you are not responsible for organising programme flow. TRS will tell
your object what to do and when to do it via a series of predefined method calls. These
are triggered by various events within the game environment. All that you have to do is
to decide which game events you want to respond to and to tell TRS what to do when the
corresponding method calls are received.
*/

 include “buildable.gs” List of standard scripts to include

 class myClass isclass Buildable { The name of your script class and immediate parent

 Asset skins;
global variable to contain a reference to the texture-
group

 Asset corona; corona texture for script use
 string name = “”; name string for script use
 bool submeshVisible = false; boolean variable for submesh visibility
 bool coronaVisible = true; boolean variable for corona visibility
 bool doorsOpen = false; boolean variable for door opening
 int skin = 0; global variable to hold the value of the current texture

/* VehicleHandler is a message handler method that you will define to carry out the
required action whenever your object receives an “Object” message from a vehicle.
*/

 void VehicleHandler(Message msg) {
 Vehicle vehicle = cast<Vehicle>msg.src; check the source of the message is a vehicle
 if (!vehicle) {return;} if it is not a vehicle then exit the method
 if (msg.minor == "InnerEnter") {doorsOpen = true;} on InnerEnter set the doorsOpen variable to true
 else if (msg.minor == "InnerLeave") {doorsOpen = false;} on InnerLeave set the doorsOpen variable to false
 SetMeshAnimationState(“default”,doorsOpen); set the animation to match the doorsOpen variable
 }

/* GetCorona is a user declared utility function which retrieves the corona texture from
config.txt. Since the code required to do this is rather cumbersome it is convenient to
declare it as a subroutine. You can use similar techniques to retrieve information from
any part of the config.txt file for any asset that you can access.
*/

 Asset GetCorona(string mesh, string effect) {
 Soup meshtable = GetAsset().GetConfigSoup().GetNamedSoup(“mesh-table”); get the asset mesh-table
 Soup effects = meshtable.GetNamedSoup(mesh).GetNamedSoup(“effects”); get the effects subtable

 KUID kuid = effects.GetNamedSoup(effect).GetNamedTagAsKUID(“texture-kuid”);
get the kuid of the asset specified by the texture-kuid
tag

 return World.FindAsset(kuid); return the asset referenced by the tag
 }

/* Init is called by the Game when your object is first initialised. Here you should set up
the default state of the object and provide default values for any global data variables
that you plan to use

*/

 public void Init(void) {
 inherited(); call any code defined by parent objects
 skins = GetAsset().FindAsset(“skins”); assign texture-group to variable
 corona = GetCorona(“default”,”corona0”); assign corona texture defined in config.txt
 AddHandler(me,"Object","","VehicleHandler"); listen for Object messages and pass to VehicleHandler
 }

/* SetProperties is called by the game when any data which has been saved to the
session file is to be recalled. This occurs when the session is first loaded and before the
Object Property browser is called. This method is also when the user presses UNDO.in
Surveyor.
*/

 public void SetProperties(Soup soup) {
 inherited(soup); call any code defined by parent objects.
 skin = soup.GetNamedTagAsInt(“skin”,skin); assign any saved value for skin.
 coronaVisible = soup.GetNamedTagAsBool(“coronaVisible”,coronaVisible); assign any saved value for corona visibility.
 submeshVisible = soup.GetNamedTagAsBool(“submeshVisible”,submeshVisible); assign any saved value for submesh visibility.
 string temp = soup.GetNamedTag(“name”); assign any saved value for the name effect.
 if (temp != “”) {name = temp;} if there is no saved value use the default.

SetProperties is the mechanism used by Trainz to
implement its UNDO/REDO system. To ensure that this
is kept in step we need to make sure that the state of
the object is kept up to date whenever SetProperties is
called. Although this will duplicate code we are using to
implement real time changes via the browser interface
this will only ever happen in Surveyor so we don’t need
to worry too much about performance.

 SetFXTextureReplacement(“skin0”,skins,skin); assign the skin
 if (coronaVisible) {SetFXCoronaTexture(“corona0”,corona);} if the corona is visible then turn it on
 else { SetFXCoronaTexture(“corona0”,null);} else turn it off
 SetFXNameText(“name0”,name); set the name effect text string
 SetMeshVisible(“submesh”,submeshVisible,0.0); set the submesh on or off
 }

/* GetProperties is called by the game when data needs to be saved to the session file.
This occurs when the session is saved by the user and after the Object Property browser
is closed.

*/

 public Soup GetProperties(void) {
 Soup soup = inherited(); call any code defined by parent objects
 soup.SetNamedTag(“skin”,skin); save the current value of skin texture
 soup.SetNamedTag(“coronaVisible”,coronaVisible); save corona visibility
 soup.SetNamedTag(“submeshVisible”,submeshVisible); save submesh visibility
 soup.SetNamedTag(“name”,name); save the name effect text
 return soup; pass the soup database back to the game
 }

/* GetDescriptionHTML is called by the game when the Object Property browser is about
to be opened or refreshed. This is where you set out the HTML code that the browser will
display including the links which will be needed to modify your object.
*/

 public string GetDescriptionHTML(void) {
 string html = inherited() + “
”; retrieve any HTML defined by parent objects
 return html pass this back to the game with your own code added
 + “Skin: ” + skin + “
” supply a link for the skin
 + “Corona: ” + coronaVisible + “
” supply a link for the corona
 + “Submesh: ” + submeshVisible + “
” supply a link for the submesh
 + “Doors: ” + doorsOpen + “
” supply a link to test the doors
 + “Name: ” + name + “
”; supply a link to edit the name
 }

/* GetPropertyType is called by the game when a link is clicked in the Object Property
browser. This is where you tell TRS what data type the linked property represents. The
data type “link” means that the user’s click is all the information that is necessary for the
game to carry out any action required and to update the browser. Other types, such as
“string” or “list” will call up an edit box allowing the user to provide typed input.
*/

 public string GetPropertyType(string p_propertyID) {
 string result = inherited (p_propertyID); retrieve any value set by the parent
 if (p_propertyID == "skin") {result = "link";} this property should be treated as a link
 else if (p_propertyID == "corona") {result = "link";} this property should be treated as a link
 else if (p_propertyID == "submesh") {result = "link";} this property should be treated as a link
 else if (p_propertyID == "doors") {result = "link";} this property should be treated as a link
 else if (p_propertyID == "name") {result = "string";} this property should be treated as a text string
 return result; send the answer back to the game
 }

/* LinkPropertyValue is called by the game to find out what action needs to be taken
when a link is clicked in the Object Property browser. Here you should change the values
of your global variables to allow the game to update the browser to match the new
values. If you want the object to change in real time you should also execute the
necessary method calls.
*/

 public void LinkPropertyValue(string p_propertyID) {
 if (p_propertyID == “skin”) { if the user clicked on skin
 skin++; add one to its current value
 if (skin >= skins.GetConfigSoup().GetNamedSoup(“textures”).CountTags()) { if the new value is greater than the skins available
 skin = 0; set it to the first skin
 }
 }
 else if (p_propertyID == “corona”) { else if the user clicked on corona
 coronaVisible = !coronaVisible; reverse the value of coronaVisible
 if (coronaVisible) {SetFXCoronaTexture(“corona0”,corona);} if the new value is on then turn the corona on
 else { SetFXCoronaTexture(“corona0”,null);} else turn it off
 }
 else if (p_propertyID == “submesh”) { else if the user clicked on submesh
 submeshVisible = !submeshVisible; reverse the value of submeshVisible
 SetMeshVisible(“submesh”,submeshVisible,0.0); set the submesh visibility to the new value
 }
 else if (p_propertyID == “doors”) { else if the user clicked on Doors
 doorsOpen = !doorsOpen; reverse the value of doorsOpen
 SetMeshAnimationState(“default”,doorsOpen); set the animation to suit
 }
 else inherited(p_propertyID); else call the parent object
 }

/* GetPropertyName is called by the game to find out what title should be provided for
the edit box when a property which requires typed input is called. If all your properties
are of type “link” you will not need to implement this method.
*/

 public string GetPropertyName(string p_propertyID) {
 string result = inherited(p_propertyID); check with the parent object
 if (p_propertyID == “name”) {result = “Enter Name Text”;} if the property is ‘name’ use this caption
 return result; send the result to the game
 }

/* GetPropertyValue is called by the game to retrieve the current value of the linked
property. There are various versions of this method to cover the different data types. If
all your properties are of type “link” you will not need to implement this method.
*/

 public string GetPropertyValue(string p_propertyID) {
 string result = inherited(p_propertyID); check with the parent object
 if (p_propertyID == “name”) {result = name;} if the property is ‘name’ then get the current text
 return result; send the result to the game
 }

/* SetPropertyValue is called by the game to set the new value of the linked property.
There are various versions of this method to cover the different data types. If all your
properties are of type “link” you will not need to implement this method.
*/

 public void SetPropertyValue(string p_propertyID, string value) {
 if (p_propertyID == “name”) {name = value;} if the property is ‘name’ then set the new value
 else inherited(p_propertyID,value); else pass the data to the parent class
 }

 }; End of script

